- нильидеал
- Mathematics: nilideal
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
АРТИНОВО КОЛЬЦО — артипово справа кольцо, кольцо, удовлетворяющее условию минимальности для правых идеалов, т. е. кольцо, в к ром любое непустое частично упорядоченное по включению множество Мправых идеалов имеет минимальный элемент (см. [1]) такой правый идеал из … Математическая энциклопедия
ЙОРДАНОВА АЛГЕБРА — алгебра, в к рой справедливы тождества 4 Такие алгебры впервые возникли в работе П. Йордана [1], посвященной аксиоматизации основ квантовой механики (см. также [2]), а затем нашли применения в алгебре, анализе и геометрии. Пусть А ассоциативная… … Математическая энциклопедия
КВАЗИРЕГУЛЯРНЫЙ РАДИКАЛ — кольца наибольший квазирегулярный идеал данного кольца. Идеал Акольца Rназ. квазирегулярным, если Аявляется квазирегулярным кольцом. Во всяком альтернативном (в частности, ассоциативном) кольце существует К. р.; он совпадает с суммой всех правых… … Математическая энциклопедия
НИЛЬАЛГЕБРА — алгебра с ассоциативными степенями (в частности, ассоциативная), в к рой всякий элемент нильпотентен. Частным случаем Н. являются нильпотентная и локально нильпотентная алгебра. В ассоциативном случае построение Н., не являющихся локально… … Математическая энциклопедия
НИЛЬ ПОТЕНТНЫЙ ИДЕАЛ — односторонний или двусторонний идеал Мкольца или полугруппы с нулем Атакой, что для нек рого натурального пвыполняется , т. е. произведение любых пэлементов идеала Мравно нулю. Напр., в кольце вычетов по модулю , где р нек рое простое число, все… … Математическая энциклопедия
ПРИМАРНОЕ КОЛЬЦО — кольцо с единицей, фак торкольцо к рого по радикалу Джекобсона изоморфно кольцу матриц над телом или, что то же самое, является артиновым простым кольцом. Если идемпотенты П. к. R с радикалом Джекобсона J можно поднимать по модулю J (т. е. у… … Математическая энциклопедия
Нильпотентный идеал — односторонний или двусторонний идеал кольца такой, что для некоторого натурального выполняется , то есть произведение любых элементов идеала равно нулю. Примеры В кольце вычетов по модулю … Википедия